Exploring the Heterotic
Landscape with Genetic
Algorithms and Reinforcement
Learning

Thomas Harvey

Based on work in collaboration with: Steve Abel, Andrei Constantin and Andre Lukas

2103.04759, 2108.07316,2110.14029, 2111.07333

OXFORD

Outline

e Introduction - RL, GA and Monads
e Reinforcement Learning (RL) applied to Monads

e Genetic Algorithms (GA) applied to Monads

e Conclusion

Introduction

Introduction: ML (Specifically RL)

e There has been a focus on supervised ML in String Theory
o Forreview see: F. Ruehle, Phys. Rep. 839, 1-117, 2020
e RL: “Mastering the game of Go with deep neural networks and tree search” -

Silver et al.

e RL is more appropriate to search the string landscape

o Halverson, Nelson, Ruehle, 1911.07835

o Larfors, Schneider, 2003.04817

o Constantin, Harvey, Lukas 2108.07316
Krippendorf, Kroepsch, Syvaeri, 2107.04039

Introduction: GA

e GA dates back to the 1960s
o J.Holland, “Adaption in Natural and Artificial Systems”, 1975
e Has been used in our field to search large environments

o Abel, Rizos, 1404.7359

o Abel, Cerdeno, Robles 1805.03615,

o Cole, Schachner, Shiu, 1907.10072,

o Abel, Constantin, Harvey, Lukas 2110.14029

o Cole, Krippendorf, Schachner, Shiu, 2111.11466

Introduction: GA and RL for String Model Building

e Our Aim: “Can RL/GA construct string realisations of the standard model”

e Ifso:

o How do they compare?
o Do they find any, until now, unknown models?

o Do they give us model building insight?

e We focus heterotic models via Monad bundles

o Very few promising models are known here!

Introduction: Monad Bundles

e Heterotic Models are specified by

o Smooth Calabi-Yau manifold X
o Vector Bundle V on X
m Will be SU(4) bundle for us —S0(10) GUT Theory

e Monad bundles are constructed via a short exact sequence.
0sVosBLoso VeKer(f) B=@oxb,) =@ 0x(ca)
a=1 a=1

e Such abundle is called a “Monad”

o Key Point: Specified by a large number of integers

Reinforcement Learning (RL)

RL: The Basics

e Agent explores environment collecting
rewards

e We will specify rewards based on agreement
with experiment

e Model building with RL:

o String Theory - Here
o Particle Physics - Harvey and Lukas 2103.04759

e Realised REINFORCE and Actor-Critic in

Mathematica

states

batches of

(state, action, reward)
from episodes

Ag o * g
terminal state ‘ ﬂ'
AN

% 3

environment

%

®

sequence of actions from policy
= episode -> rewards

neural policy network

updated
policy

\ 4

state —

" action

RL: Monads

RL Physics
Environment All Monads (B,C) on a fixed Calabi-Yau with entries:
bmin < bai < bmax and Cmin < Cai < Cmax
Actions For fixed (i, j, a): b, —b_' £ 1 and ¢ —c | £ 1 simultaneously
Reward Increase in State Value

State Values ~ -(Deviation from MSSM*) + (Big Bonus if Terminal)

Terminal State The Standard Model spectrum*

*All checks requiring cohomology calculations are done after training

RL: Mol

RL

Environment

Actions

Reward

Terminal Stat

| property term in v(B,C) | comment
2|lind(V) —
index match —% 7 = —3|I'| is the target index,
ind(V') computed from Eq. (2.20)
h
1
anomaly e Z min (c2;(TX) — ¢2:(V),0) | no penalty if anomaly condition satisfied,
i=1
¢2i(V') computed from Eq. (2.20)
bundleness —(daeg + 1) dgeg = dimension of degeneracy locus
as discussed in Sec. 2.4; if the degeneracy
locus is empty, dgeg is to be taken as —1
split bundle —TNgplit ngplit = number of splits in V
equivariance | — Z mod(ind(U), T'|) U runs over all line bundles in B, C
ucB,C
or blocks of same line bundles,
as discussed in Sec. 2.4
trivial bundle | —n¢rivial Nirivial = number of trivial line bundles
~ max(0, hO(X, B) — h%(X,C))

stability V

hM3

tests Hoppe’s criterion for V,

cohomologies from formulae in Sec. 2.3

stability V*

max(0, h°(X, B*) — h%(X, C*))
- hM3

tests Hoppe's criterion for V*,

cohomologies from formulae in Sec. 2.3

Table 2: Contributions to the intrinsic value for the monad environment. The intrinsic value v(B,C) is

the sum of all eight terms and M = max(bmax, Cmax)-

RL: Bicubic

e SO(10) GUT From Monad on Bicubic, with Z3 X Z3 Wilson line
o b.n=-3,b =5,1,=6,r,=2

=5c . =0,c
mi max min max

o 1072 states in total!

e Training ~1 hour on single CPU - Find ~15 models after extra checks

1.0 — A
08L 1000 -
S 2
S £ oot
S 06 =
- g 600
= 04+F =
= =
) L 400+
- b
0.2+ 200 L
0.0 ; 0 1 | | |
0 20000 40000 60000 80000 100000 0 20000 40000 60000 80000 100000

rounds

rounds

RL: Bicubic

e Keep searching to saturation (35 inequiv. perfect states

core days)
e Suggests almost all models found
e Contains 27 genuine new (6,2)

models, and the one known model!

visited states

o Anderson, Gray, He, Lukas - 0911.1569
e Also have O(500) models on triple

tri-linear P>
X ~

RL: Bicubic

0 25 30
0.0F e
. L —— index match
—V. " —— anomal
c _ y
-f—’_, _ —— bundleness
=
Qo - —— split bundle
] L
..go 0.2_ —— equivariance
(&) - —— trivial bundle
m -
=2 L —— stability of V
S 03}
> 3 stability of V=
-04r

Figure 7: The different contribtutions to the intrinsic value for (r4,7.) = (6,2) bicubic models. This
data is averaged over 1000 termianl states using the trained network.

Genetic Algorithms (GA)

BN

GA: The Basics

e Take integers specifying Monad and convert to binary

e Assign “fitness” (= state value in previous langage) to each

e Create population (250 in our case)

e Evolve the population via crossing and mutation many times over

e After a number of generations the population has many terminal states

e Code for GA available:

o https://qithub.com/harveyThomas4692/GAMathematica

https://github.com/harveyThomas4692/GAMathematica

GA: Bicubic

This produces terminal states in minutes

0.8
0.6

0.4

terminal fraction

0.2

0.0 - ! ' x
0 50 100 150 200

generation

GA: Bicubic RL vs GA

RL (35 Core days) GA (10 Core days)
inequiv. perfect states inequiv. perfect states

600 F 600 _ //_’____,_/‘_——
500 500 /
400 400}
300 300 ,/

» /
200 200 ¢
100 | 100 £

visited states i — visited states

5.0x 108 1.0x10° 1.5x10° T 1x108 2x108 3x108 4x108 5x108
e Largely the same terminal states as found with RL

e GA appears faster than RL for this problem and our implementation

e GA tends to find more permutations (expected from implementation)

Conclusion

e RL and GA are both efficient in engineering string models

e Many new models are discovered

o Both methods give similar models, including many new models

e For our implementation GA was faster at finding terminal states
e Can this be extended to other manifolds? larger h''? Extra Constraints?

Can this be used in other string constructions?

