Exploring the Heterotic Landscape with Genetic Algorithms and Reinforcement Learning

Thomas Harvey

Based on work in collaboration with: Steve Abel, Andrei Constantin and Andre Lukas

2103.04759, 2108.07316, 2110.14029, 2111.07333

Outline

- Introduction RL, GA and Monads
- Reinforcement Learning (RL) applied to Monads
- Genetic Algorithms (GA) applied to Monads
- Conclusion

Introduction

Introduction: ML (Specifically RL)

- There has been a focus on supervised ML in String Theory
 - For review see: F. Ruehle, Phys. Rep. 839, 1-117, 2020
- RL: "Mastering the game of Go with deep neural networks and tree search" Silver et al.
- RL is more appropriate to search the string landscape
 - Halverson, Nelson, Ruehle, 1911.07835
 - Larfors, Schneider, 2003.04817
 - Constantin, Harvey, Lukas 2108.07316
 - Krippendorf, Kroepsch, Syvaeri, 2107.04039

Introduction: GA

- GA dates back to the 1960s
 - J. Holland, "Adaption in Natural and Artificial Systems", 1975
- Has been used in our field to search large environments
 - Abel, Rizos, 1404.7359
 - Abel, Cerdeno, Robles 1805.03615,
 - Cole, Schachner, Shiu, 1907.10072,
 - Abel, Constantin, Harvey, Lukas 2110.14029
 - Cole, Krippendorf, Schachner, Shiu, 2111.11466

Introduction: GA and RL for String Model Building

- Our Aim: "Can RL/GA construct string realisations of the standard model"
- If so:
 - How do they compare?
 - Do they find any, until now, unknown models?
 - Do they give us model building insight?
- We focus heterotic models via Monad bundles
 - Very few promising models are known here!

Introduction: Monad Bundles

- Heterotic Models are specified by
 - Smooth Calabi-Yau manifold X
 - $\circ \quad \ \ Vector \ \ Bundle \ V on \ X$
 - Will be SU(4) bundle for us \rightarrow SO(10) GUT Theory
- Monad bundles are constructed via a short exact sequence.

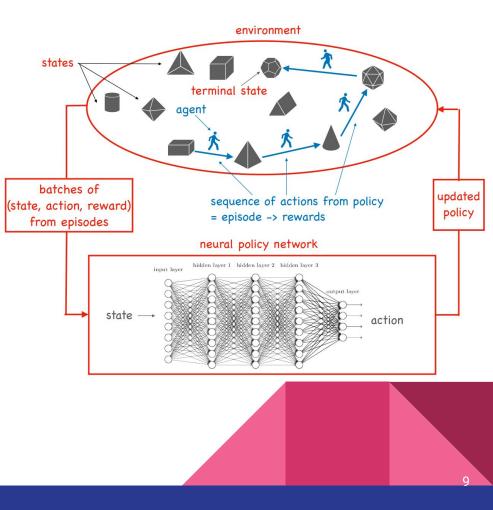
$$0 \to V \to B \xrightarrow{f} C \to 0$$
 $V \cong \operatorname{Ker}(f)$ $B = \bigoplus_{a=1}^{-} \mathcal{O}_X(\mathbf{b}_a)$ $C = \bigoplus_{\alpha=1}^{-} \mathcal{O}_X(\mathbf{c}_\alpha)$

- Such a bundle is called a "Monad"
 - Key Point: Specified by a large number of integers

Reinforcement Learning (RL)

RL: The Basics

- Agent explores environment collecting rewards
- We will specify rewards based on agreement with experiment
- Model building with RL:
 - String Theory Here
 - Particle Physics Harvey and Lukas 2103.04759
- Realised REINFORCE and Actor-Critic in Mathematica



RL: Monads

<u>RL</u>	<u>Physics</u>				
Environment	All Monads (B,C) on a fixed Calabi-Yau with entries: $b_{min} \le b_a^i \le b_{max}$ and $c_{min} \le c_a^i \le c_{max}$				
Actions	For fixed (i, j, a): $b_a^{i} \rightarrow b_a^{i} \pm 1$ and $c_a^{j} \rightarrow c_b^{j} \pm 1$ simultaneously				
Reward	Increase in State Value State Values ~ -(Deviation from MSSM*) + (Big Bonus if Terminal)				
Terminal State	The Standard Model spectrum*				

*All checks requiring cohomology calculations are done after training

	property	term in $v(B,C)$	comment
	index match	$-\frac{2 \mathrm{ind}(V)-\tau }{hM^3}$	$\tau = -3 \Gamma $ is the target index,
RL: Mo		10111	ind(V) computed from Eq. (2.20)
RL	anomaly	$\frac{1}{hM^2} \sum_{i=1}^{h} \min\left(c_{2i}(TX) - c_{2i}(V), 0\right)$	no penalty if anomaly condition satisfied,
		<i>i</i> —1	$c_{2i}(V)$ computed from Eq. (2.20)
	bundleness	$-(d_{\text{deg}}+1)$	$d_{\rm deg} = {\rm dimension}$ of degeneracy locus
Environment			as discussed in Sec. 2.4; if the degeneracy
			locus is empty, d_{deg} is to be taken as -1
	split bundle	$-n_{ m split}$	$n_{\text{split}} = \text{number of splits in } V$
Actions	equivariance	$-\sum_{U \subset B,C} \operatorname{mod}(\operatorname{ind}(U), \Gamma)$	U runs over all line bundles in B, C
			or blocks of same line bundles,
Reward			as discussed in Sec. 2.4
	trivial bundle	$-n_{ m trivial}$	$n_{\rm trivial} = {\rm number \ of \ trivial \ line \ bundles}$
Terminal Stat	stability V	$-\frac{\max(0,h^0(X,B)-h^0(X,C))}{hM^3}$	tests Hoppe's criterion for V ,
			cohomologies from formulae in Sec. 2.3
	stability V^*	$-\frac{\max(0, h^0(X, B^*) - h^0(X, C^*))}{hM^3}$	tests Hoppe's criterion for V^* ,
		10111	cohomologies from formulae in Sec. 2.3

Table 2: Contributions to the intrinsic value for the monad environment. The intrinsic value v(B, C) is the sum of all eight terms and $M = \max(b_{\max}, c_{\max})$.

11

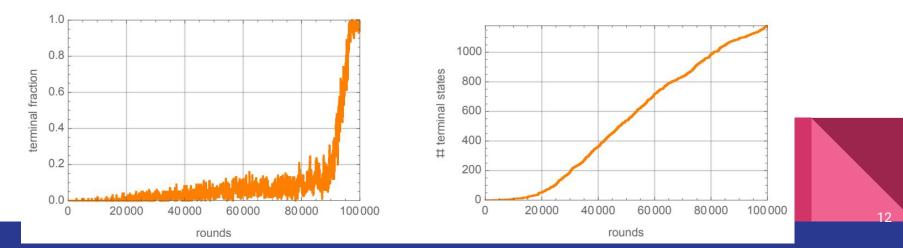
RL: Bicubic

• SO(10) GUT From Monad on Bicubic, with Z3 X Z3 Wilson line

•
$$b_{min} = -3$$
, $b_{max} = 5$, $c_{min} = 0$, $c_{max} = 5$, $r_{B} = 6$, $r_{c} = 2$

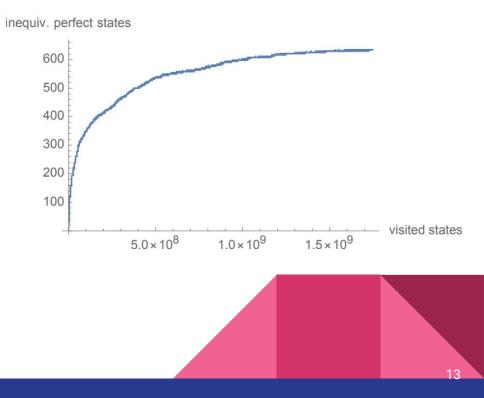
• 10^12 states in total!

• Training ~1 hour on single CPU - Find ~15 models after extra checks



RL: Bicubic

- Keep searching to saturation (35 core days)
- Suggests almost all models found
- Contains 27 genuine new (6,2) models, and the one known model!
 - Anderson, Gray, He, Lukas 0911.1569
- Also have O(500) models on triple tri-linear $X \sim \begin{pmatrix} \mathbb{P}^2 & | & 1 & 1 & 1 \\ \mathbb{P}^2 & | & 1 & 1 & 1 \\ \mathbb{P}^2 & | & 1 & 1 & 1 \end{pmatrix}$



RL: Bicubic

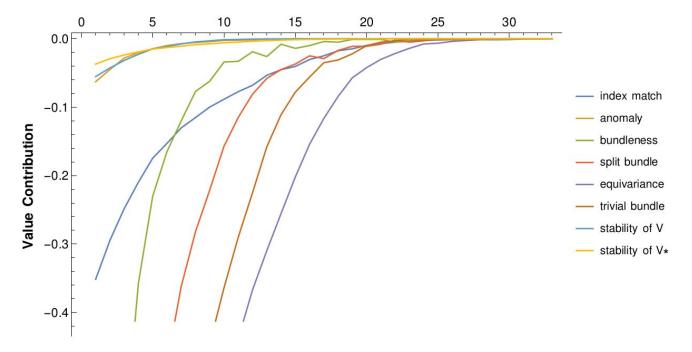
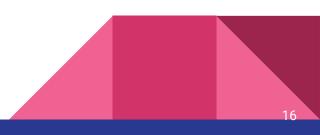


Figure 7: The different contributions to the intrinsic value for $(r_b, r_c) = (6, 2)$ bicubic models. This data is averaged over 1000 termianl states using the trained network.

Genetic Algorithms (GA)

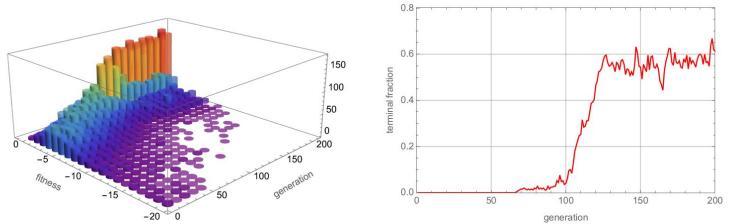
GA: The Basics

- Take integers specifying Monad and convert to binary
- Assign "fitness" (= state value in previous langage) to each
- Create population (250 in our case)
- Evolve the population via crossing and mutation many times over
- After a number of generations the population has many terminal states
- Code for GA available:
 - <u>https://github.com/harveyThomas4692/GAMathematica</u>



GA: Bicubic

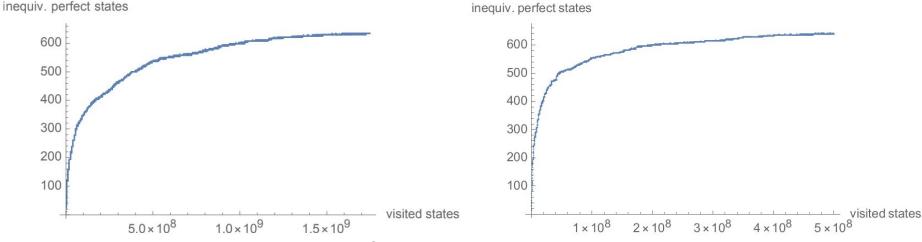
This produces terminal states in minutes



GA: Bicubic RL vs GA

RL (35 Core days)

GA (10 Core days)



- Largely the same terminal states as found with RL
- GA appears faster than RL for this problem and our implementation
- GA tends to find more permutations (expected from implementation)

Conclusion

- RL and GA are both efficient in engineering string models
- Many new models are discovered
 - Both methods give similar models, including many new models
- For our implementation GA was faster at finding terminal states
- Can this be extended to other manifolds? larger h¹¹? Extra Constraints?
- Can this be used in other string constructions?

