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Introduction




Introduction: ML (Specifically RL)

e There has been a focus on supervised ML in String Theory
o Forreview see: F. Ruehle, Phys. Rep. 839, 1-117, 2020
e RL: “Mastering the game of Go with deep neural networks and tree search” -

Silver et al.

e RL is more appropriate to search the string landscape

o Halverson, Nelson, Ruehle, 1911.07835

o Larfors, Schneider, 2003.04817

o Constantin, Harvey, Lukas 2108.07316
Krippendorf, Kroepsch, Syvaeri, 2107.04039




Introduction: GA

e GA dates back to the 1960s
o J.Holland, “Adaption in Natural and Artificial Systems”, 1975
e Has been used in our field to search large environments

o  Abel, Rizos, 1404.7359

o Abel, Cerdeno, Robles 1805.03615,

o Cole, Schachner, Shiu, 1907.10072,

o Abel, Constantin, Harvey, Lukas 2110.14029

o Cole, Krippendorf, Schachner, Shiu, 2111.11466




Introduction: GA and RL for String Model Building

e Our Aim: “Can RL/GA construct string realisations of the standard model”

e Ifso:

o How do they compare?
o Do they find any, until now, unknown models?

o Do they give us model building insight?

e We focus heterotic models via Monad bundles

o Very few promising models are known here!




Introduction: Monad Bundles

e Heterotic Models are specified by

o Smooth Calabi-Yau manifold X
o Vector Bundle V on X
m  Will be SU(4) bundle for us —S0(10) GUT Theory

e Monad bundles are constructed via a short exact sequence.
0sVosBLoso VeKer(f) B=@oxb,) =@ 0x(ca)
a=1 a=1

e Such abundle is called a “Monad”

o Key Point: Specified by a large number of integers



Reinforcement Learning (RL)




RL: The Basics

e Agent explores environment collecting
rewards

e We will specify rewards based on agreement
with experiment

e Model building with RL:

o  String Theory - Here
o  Particle Physics - Harvey and Lukas 2103.04759

e Realised REINFORCE and Actor-Critic in

Mathematica
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RL: Monads

RL Physics
Environment All Monads (B,C) on a fixed Calabi-Yau with entries:
bmin < bai < bmax and Cmin < Cai < Cmax
Actions For fixed (i, j, a): b, —b_' £ 1 and ¢ —c | £ 1 simultaneously
Reward Increase in State Value

State Values ~ -(Deviation from MSSM*) + (Big Bonus if Terminal)

Terminal State The Standard Model spectrum*

*All checks requiring cohomology calculations are done after training




RL: Mol

RL

Environment

Actions

Reward

Terminal Stat

| property term in v(B,C) | comment
2|lind(V) —
index match —% 7 = —3|I'| is the target index,
ind(V') computed from Eq. (2.20)
h
1
anomaly e Z min (c2;(TX) — ¢2:(V),0) | no penalty if anomaly condition satisfied,
i=1
¢2i(V') computed from Eq. (2.20)
bundleness —(daeg + 1) dgeg = dimension of degeneracy locus
as discussed in Sec. 2.4; if the degeneracy
locus is empty, dgeg is to be taken as —1
split bundle —TNgplit ngplit = number of splits in V
equivariance | — Z mod(ind(U), T'|) U runs over all line bundles in B, C
ucB,C
or blocks of same line bundles,
as discussed in Sec. 2.4
trivial bundle | —n¢rivial Nirivial = number of trivial line bundles
~ max(0, hO(X, B) — h%(X,C))

stability V

hM3

tests Hoppe’s criterion for V,

cohomologies from formulae in Sec. 2.3

stability V*

max(0, h°(X, B*) — h%(X, C*))
- hM3

tests Hoppe's criterion for V*,

cohomologies from formulae in Sec. 2.3

Table 2: Contributions to the intrinsic value for the monad environment. The intrinsic value v(B,C) is

the sum of all eight terms and M = max(bmax, Cmax)-




RL: Bicubic

e SO(10) GUT From Monad on Bicubic, with Z3 X Z3 Wilson line
o b.n=-3,b =5,1,=6,r,=2

=5c . =0,c
mi max min max

o 1072 states in total!

e Training ~1 hour on single CPU - Find ~15 models after extra checks
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RL: Bicubic

e Keep searching to saturation (35 inequiv. perfect states

core days)
e Suggests almost all models found
e Contains 27 genuine new (6,2)

models, and the one known model!

visited states

o Anderson, Gray, He, Lukas - 0911.1569
e Also have O(500) models on triple

tri-linear P>
X ~



RL: Bicubic
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Figure 7: The different contribtutions to the intrinsic value for (r4,7.) = (6,2) bicubic models. This
data is averaged over 1000 termianl states using the trained network.




Genetic Algorithms (GA)

BN




GA: The Basics

e Take integers specifying Monad and convert to binary

e Assign “fitness” (= state value in previous langage) to each

e Create population (250 in our case)

e Evolve the population via crossing and mutation many times over

e After a number of generations the population has many terminal states

e Code for GA available:

o https://qithub.com/harveyThomas4692/GAMathematica



https://github.com/harveyThomas4692/GAMathematica

GA: Bicubic

This produces terminal states in minutes
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GA: Bicubic RL vs GA

RL (35 Core days) GA (10 Core days)
inequiv. perfect states inequiv. perfect states
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visited states i — visited states

5.0x 108 1.0x10° 1.5x10° T 1x108 2x108  3x108  4x108  5x108
e Largely the same terminal states as found with RL

e GA appears faster than RL for this problem and our implementation

e GA tends to find more permutations (expected from implementation)




Conclusion

e RL and GA are both efficient in engineering string models

e Many new models are discovered

o Both methods give similar models, including many new models

e For our implementation GA was faster at finding terminal states
e Can this be extended to other manifolds? larger h''? Extra Constraints?

Can this be used in other string constructions?




